I-67

36

MÖSSBAUER ²³⁷Np AND CRYSTALLOGRAPHIC STUDIES OF $M^{II}NpF_6$ ·3H₂O ($M^{II} = Mn, Fe, Co$) COMPOUNDS

H. Abazli, A. Cousson, M. Gasperin, J. Fove and M. Pages

Institut Curie, 75231 Paris, Cedex 05 (France)

The compounds $M^{II}NpF_6-3H_20$ with $M^{II} = Mn$, Fe, Co were prepared as single crystals by hydrothermal synthesis (T = 400°C, P = 2000 bars). CoNpF₆-3H₂0 crystallises in a monoclinic system with C2 space group. Cell parameters are a = 12.143(9)Å; b = 6.922(5)Å; c = 7.942(5)Å; β = 92.84°.

The Mössbauer measurements were performed in a conventional He Cryostat. The Mössbauer source used in the experiments was a 500 mCi 241 Am metal with a conventional sine mode drive system.

A microbalance magnetometer attached to a varying temperature Cryostat was used for the susceptibility measurements. The maximum applied magnetic field was 14KG.

The Mossbauer spectroscopy of ^{237}Np shows a magnetically split hyperfine spectrum at 4.2K for all those compounds.

The spectra can be fitted with a magnetic hyperfine field associated to a quadrupole splitting using the linear correlation between B_{eff} and e^2qQ . From isomer shift measurements, we confirm the IV charge state of Np in these 3 compounds.

The magnetic susceptibility shows antiferromagnetic type transition. $1/\chi$ = f(T) follows a Curie-Weiss law above T_N.

I-68

THE PREPARATION OF TECHNETIUM OXYFLUORIDES AND THEIR CHARACTERIZATION BY ⁹⁹Tc, ¹⁷O AND ¹⁹F NMR SPECTROSCOPY

Kenneth J. Franklin, Colin J. L. Lock, B. G. Sayer and Gary J. Schrobilgen*

Department of Chemistry, McMaster University, Hamilton, Ont., L8S 4M1 (Canada)

Relatively little is known about the chemistry of technetium, especially in its highest oxidation state. At the same time, 99Tc (I=9/2, Q=-0.19 x 10^{-24} cm²) is one of the more sensitive NMR nuclei (sensitivity relative to the proton is 0.275 at 100% abundance). Pertechnetate, TcO₄⁻, the standard for ⁹⁹Tc NMR spectroscopy, also displays primary isotopic shifts for 170^{-} and 180-enriched samples. Technetium-99 NMR has proven an invaluable structural probe in the study of Tc(VII) oxyfluorides.

Noble gas fluorides (KrF₂ and XeF₆) have been used to synthesize novel Tc(VII) species from solutions of TcO₃F in anhydrous HF, i.e. Tc₂O₅F₄ and TcO₂F₃. Pertechnetyl fluoride has also been prepared and its fluoride ion donor properties studied in HF solution. Solid TcO₃⁺AsF₆⁻ has been isolated from these solutions and characterized. In addition to ⁹⁹Tc NMR, compounds have also been studied by 19F and 170 (enriched) NMR spectroscopy.